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Glossary of terms 

Orbital parameters 
[Astronomical Almanac 2000, p. E3] 

 

 

Sidereal orbit period (days)      

 

The time it takes the body to make one 

revolution about the sun relative to the fixed 

stars in days. 

 

Tropical orbit period (days)      

 

The average time for the body to make one 

revolution  about the sun from one point in its 

seasonal orbit to the equivalent point (e.g. 

equinox to equinox) in days. 

For Earth, this equals exactly 1 year. 

 

Synodic period (days)             

 

The time interval between similar configurations 

in the orbit of the body and Earth, in days. 

                                

Sidereal rotation period   

 

The time for one rotation of the body on its axis 

relative to the fixed stars, in hours.  A minus sign 

indicates retrograde rotation. 

 

Solar day / Length of day              

 

The average time in hours for the Sun to move 

from the noon position in the sky at a point on 

the equator back to the same position, on Earth 

this defines a 24 hour day.  

 

Jovian Days 

 

(Jovian-  of pertaining to Jupiter) The revolution 

of Jupiter on its axis per Jovian year. 

Saturnian Days 

 

Saturnian – (of or pertaining to the planet 

Saturn) The revolution of Saturn on its axis per 

Saturian year. 

 

Synodic Month 

 

The synodic month, or complete cycle of phases 

of the Moon as seen from Earth, 

 

Apsidal nodes 

 

In celestial mechanics,  perihelion precession, 

apsidal precession or orbital precession is the 

precession  (rotation) of the orbit of a celestial 

body.  

 

Lunar precession 

 

Precession is the rotation of a plane (or its 

associated perpendicular axis) with respect to a 

reference plane.  

 

Eclipse season 

 

Eclipse seasons occur slightly less than six 

months apart (successively occurring every 

173.31 days - half of an eclipse year), the time it 

takes the Sun to travel from one node to the next 

along the ecliptic.  
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Eclipse year 

 

Eclipse year is period, with which line of lunar 

nodes points to the Sun. Line of nodes circle 

opposite direction to motion of Earth . Eclipse 

year is shorter than solar tropical year. 

 

Inex cycle  

 

This eclipse is a part of the long period, Inex 

cycle, repeating at alternating nodes, every 358 

synodic months  (≈ 10,571.95 days, or 29 years 

minus 20 days). The inex is an eclipse cycle of 

10,571.95 days (about 29 years minus 20 days). 

The cycle was first described in modern times 

by Crommelin in 1901, but was named by 

George van den Bergh who studied it half a 

century later. It has been suggested that the 

cycle was known to Hipparchos.[1] A new saros 

series often begins one inex after the last series 

started. 

 

Metonic cycle 

 

Metonic cycle is a period of very close to 19 

years that is remarkable for being nearly a 

common multiple of the solar year and the 

synodic lunar month being  a period of 19 years, 

almost exactly equal to 235 synodic months, 

counts 6,940 days. 

 

Saros cycle  

 

The saros is a period of approximately 223 

synodic months (approximately 6585.3211 days, 

or 18 years and 11 days and 8h), that can be used 

to predict eclipses. 

 

 

Lens 

 

In geometry, a lens is a biconvex (convex-

convex) shape comprising two circular arcs, 

joined at their endpoints.  

 

 

              

                    

 

 

 

 

 

 

 

 

 

 

 

 

            

https://en.wikipedia.org/wiki/Eclipse_cycle
https://en.wikipedia.org/wiki/Andrew_Crommelin
https://en.wikipedia.org/wiki/George_van_den_Bergh
https://en.wikipedia.org/wiki/Hipparchos
https://en.wikipedia.org/wiki/Inex#cite_note-1
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2.0  ( Two circles) 

2.1 Earth 

3.0 Sun 

              3.1 Solar                

                          maximum 

4.0 Mercury 

           4.1 Synodic 

           4.2 Sidereal Rotation period 

           4.3 Sidereal Orbit period 

           4.4 Solar day 

           4.5 Combined statistics  
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           5.1 Synodic period 

           5.2 Sidereal rotation period 
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           5.4 Solar day 

           5.5 Alternative orbit calculation 
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6.0Earth 
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          6.1 Solar tropical orbit 

                       6.2 Sidereal orbit 

7.0 Mars 

           7.1Tropical orbit period 

           7.2 Axis rotations 

            7.3 Synodic period 

8.0 Jupiter 

             8.1 Synodic 

             8.2 Orbit 

             8.3 Solar day  
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 10.0 Moon 
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 10.4 Lunar nodal precession (2) 

11.0 Eclipse 

           11.1 Eclipse season 

           11.2 Eclipse year 

           11.3 Inex cycle 

 11.4 Metonic cycle 

           11.5 Saros cycle 

12.0     Speed of light 

           12.1 Ratio speed of earth to the speed of light 

 13.0      All calculations 
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Abstract: 

 

This article strives to develop a model for evaluating the hypothetical 

correlation between geometry with the orbital time cycles of the 

visible planets in our solar system. This work establishes a ratio and 

proportion synchronicity using predominately elementary 

mathematical calculations. Two interlocked circles of equal radius is 

the basic foundation of this investigation. 

 

This model is used to suggest there exists a highly accurate connection 

between orbital time frequencies and axis revolutions with  

mathematical calculations determined from analysis of inscribed and 

bounded object properties of a circular geometric image. The process 

produces results of approximately 99.50 % accuracy or usually 

significantly less than 2.3% percentage error. 

 

This work provides a novel approach with which to study the 

complexities of the forth co-ordinate¹, - (time). This is achieved by 

evaluating the correlation between complex astronomy systems and   

geometry of which circles form the basic design.    

 

Historically, circles were a crucial geometric shape used in most 

scientific investigations of astronomy until ellipses provided proof of 

the orbital  mechanics of the solar system. This work seeks to 

revitalise the circle as a credible method of mathematically studying 

the solar system.  
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Introduction 

 

Centuries ago, when ancient astronomers first viewed the night sky, 

they would have noticed that some objects, known today as planets, 

moved slowly amongst the background of fixed stars in a repeated, 

orderly fashion. Because they, like the sun and moon, appeared and 

reappeared in a consistent manner, suggested to the observer their 

positions may be predictable. Mankind thus began the search for 

mathematical patterns which has led us to our understanding of 

astronomy today. 

                                                                  

  
The Venus tablet of Ammisaduqa (Enuma Anu 

Enlil Tablet 63) refers to the record of 

astronomical observations of Venus, as 

preserved in numerous cuneiform tablets dating 

from the first millennium BCE. 

                                    

A method of predicting the motions of planets was to map their 

positions against the star field background and then to apply 

mathematics or geometry to the changing positions. This required a 

dedicated observation of the night sky, gradually building upon an 

accumulated body of shared knowledge from which to develop 

theories. It was the illusion of the sky appearing to move from one 

side of the horizon to the other while the ground seemed stationary 

that gave credence to the geocentric (earth centred) view of the 

world.  

 

When one views the 360 degree horizon, it is easy to see how the 

geometric shape of a circle became central from which to form the 

basis of cosmological and spiritual thought with the observer at the 

centre surrounded by a perfect circle. Many ancient indigenous tribes 

often established a circle before performing any spiritual ceremony. 

https://en.wikipedia.org/wiki/Enuma_Anu_Enlil
https://en.wikipedia.org/wiki/Enuma_Anu_Enlil
https://en.wikipedia.org/wiki/Enuma_Anu_Enlil
https://en.wikipedia.org/wiki/Venus
https://en.wikipedia.org/wiki/Cuneiform
https://en.wikipedia.org/wiki/Clay_tablet
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The circle has no beginning and no end. Similarly, it may have held 

true to the ancient astronomer that the universe was considered to 

hold the same eternal qualities. 

 

Invariably, it was the circle which became the natural geometric 

foundation for any analysis of the universe often venerated with its 

qualities of perfection. This was not only as a result of  observations 

of the night sky but also a spiritual bases relative to the theological 

influences of the time.  It was believed that if the Creator of the 

universe were to make the cosmos work in perfect harmony, it was 

naturally concluded that a circle would be at the heart of any design. 

In Christian symbolism, the  circle represents eternity. Therefore, any 

attempt to investigate this discipline and to achieve credibility within 

the scientific and religious community of the day, circles and spheres 

became salient features from which to develop workable models.  

 

It has been recorded that Aristarchus of Samos
2
, (c. 310 – c. 230 BC) 

an ancient Greek astronomer and mathematician, presented one of 

the earliest known models which placed the sun at the centre with the 

earth revolving around it within the perceived spherical universe. 

(Journal of Astronomical History and Heritage (ISSN 1440-2807), 

Vol. 11, No. 1, p. 39 - 49 (2008). Liritzis, Ioannis; 

Coucouzeli, Alexandra  ). 

 

Until as recent as a couple of centuries ago the circular orbit theory 

held weight being the bench mark for most calculations and opinions 

on the mechanics of the solar system. It was the geocentric model 

with the earth as being at the centre that won favour for over 2,000 

years. Christian theologians were prone to rejecting  theories that did 

not agree with the fact that earth was the centre of the universe and 

nothing other than a perfect circle should be the prime instrument 

used to investigate the heavens.  

 

Circles dominated the Ptolemaic system
3
, a mathematical model of 

the universe formulated by the Alexandrian astronomer and 

mathematician Ptolemy about 150 AD and recorded by him in his, 

'Almagest and Planetary Hypotheses'.  The Ptolemaic system is a 

geocentric cosmology that describes the earth being stationary at the 

centre of the universe and the surrounding sun and planets depicted 

by a series of orbiting circles.  Epicycles were added to explain 

visual irregularities such as the mars retrograde. The natural 

expectation was that the heavenly bodies must travel in uniform 

motion around the earth along the most perfect route possible, a 

circular orbit. 

(ir.nmu.org.ua/bitstream/.../dc480e68d659d20361017f0e12c6d2db.pd

f.1) 

 

In Egypt, located at the site of Deir-el-Bahri, in the tomb of Senemut
4
 

(Theban tomb no. 353) the earliest depictions of the solar system is 

illustrated with a series of circles dating back to the 18
th

 Dynasty (ca. 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Liritzis,+I&fullauthor=Liritzis,%20Ioannis&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Coucouzeli,+A&fullauthor=Coucouzeli,%20Alexandra&charset=UTF-8&db_key=AST
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1473 B.C.). 

 

Figure 2. Astronomical ceiling decoration in its earliest form can 

be traced to the Tomb of Senemut (Theban tomb no. 353)  

 

 

 

 

 

 

 

The ancient Greeks also understood it to be logical that the motions 

of the planets were circular and not elliptical. 

(www.atnf.csiro.au/outreach/education/senior/cosmicengine/classical

astronomy.html#palto) An Athenian and pupil of Socrates, Plato
5
 

believed the universe was perfect and unchanging and that the stars 

were eternal and divine, embedded in an outer sphere. All heavenly 

motions were circular or spherical as the sphere was considered to be 

the perfect shape.  

 

 

https://en.wikipedia.org/wiki/Senenmut
http://www.atnf.csiro.au/outreach/education/senior/cosmicengine/classicalastronomy.html#paltoT
http://www.atnf.csiro.au/outreach/education/senior/cosmicengine/classicalastronomy.html#palto
http://www.atnf.csiro.au/outreach/education/senior/cosmicengine/classicalastronomy.html#palto
http://www.atnf.csiro.au/outreach/education/senior/cosmicengine/classicalastronomy.html#palto
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The geocentric system held credibility well into the early modern 

age. From the late 16th century, it was gradually replaced by the 

heliocentric (sun centred) system of Copernicus
6
, Galileo

7
 and 

Kepler
8
. Although many early cosmologists such as Aristarchus 

speculated about the motion of the earth around a stationary sun, it 

was not until the 16th century that Copernicus presented a fully 

predictive mathematical model of a heliocentric system, which was 

later elaborated on by Kepler and defended by Galileo. 

Through the course of thousands of years of scientific scrutiny of  

planetary movements, it was the circle which played a central role 

until eventually they fell out of favour replaced by the science proof 

provided by ellipses. 

 According to M. Beech in the Journal of Recreational Mathematics 

29 (2), 114 – 120.),  

"Before Kepler made his scientific eureka moment, 

documenting his three laws in the 16
th

 century, he found it 

difficult to relinquish his earlier work concerning circular 

geometric modelling. Kepler's Mysterium Cosmographicum 

(image 1) proposed that the distance of the orbits of the 

planets from the sun could be calculated using a series of 

geometric shapes alluding to a direct mathematical link 

between geometry and the solar system.  Kepler argued that 

the ratio of orbital radii for Venus and Mercury was the 

same, or nearly so, as the ratio of the radii for the 

circumscribed and inscribed spheres of an octahedron". 
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Figure 1. The inscribed and circumscribed triangles to the orbits of 

Jupiter and Saturn. 

M. Beech continues. 

"Kepler's initial inspiration to study planetary geometry 

was conceived while teaching an astronomy class at the 

University of Turbingen, in Germany, on July 9th, 1595 

[2]. During the class, he had drawn for his students the 

inscribed and circumscribed circles to an equilateral 

triangle where he realised that the ratio of the radii for the 

inscribed and circumscribed circles was the same as the 

ratio of orbital radii of Saturn and Jupiter". 

Kepler could not believe that the coincidence of ratios was 

purely fortuitous. There had, he reasoned, to be meaning 

behind such a result. However, the planets simply do not 

arrange themselves in accordance with Kepler's polygonal 

scheme. Having found that the planets could not be 

organised according to a progression of polygons, he 

turned to three dimensional objects and developed the 

nested polyhedral model which he described in the 

Mysterium Cosmographicum. 

It seems that Kepler never completely abandoned the ideas presented 

in his Mysterium, although he did admit that his nested polyhedron 

theory had its weaknesses. 
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Having cleaned the astronomy stables of circles and 

spirals, I was left with only a single cartful of dung. 

Johannes Kepler (1571 -1630) 

This work is an extension to that same line of cosmological analysis, 

that is, our solar system may be calculated using geometry as a 

framework for investigation.  

 

The earth is the primary reference point for astronomers when 

calculating the mathematics of space. The distance from the sun is 

described as 1 AU.  When analysing the orbits of other planets, 

generally their characteristics are defined relative to the axis 

revolution of the earth. Similarly, this work adopts the earth as the 

central reference point. As opposed to examining the physical 

distance of the planets from the sun, this process looks at time 

duration only.  

 

It is a step back in time in a sense, yet ironically, it is using the 

mathematics of planetary time in a circular environment, where this 

research is fundamentally centred.  

 

Time is probably the most complex paradigm to attempt to seek an 

empirical explanation. Although modern civilisation has made 

advances in all areas of science, it seems that 'time' has seen very little 

substantial development in understanding remaining an abstract 

concept across the general community.  It is time that was the critical 

element that formed the basis of all observations throughout the entire 

history of astronomy and remains so today. 

 

The suggestion that astronomy cycles can be reconciled using number 

and geometry is a concept that is deep-rooted in humanity's 

investigation of the universe. It is against the historical context of 

geometry used in astronomy and contemporary scientific knowledge 

of elliptical orbits that this work forms a challenging new perspective. 

It seeks to revitalise the circle as a credible means to investigate the 

mechanics of the solar system. The hypothesis has been developed 

where the properties of circles and their inscribed and bounded 

objects can be used to develop relationships whereby the orbital 

characteristics of planets in our solar system may be determined with 

considerable accuracy. 

 

"Philosophy is written in that great book which ever lies 

before our eyes — I mean the universe — but we cannot 

understand it if we do not first learn the language and 

grasp the symbols, in which it is written. This book is 

written in the mathematical language, and the symbols are 

triangles, circles and other geometrical figures, without 
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whose help it is impossible to comprehend a single word of 

it; without which one wanders in vain through a dark 

labyrinth"  

                                                                                                                                                                                                           

Galileo Galilei (1564-1642) 
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1.0 Methods and materials 

 

The geometric correlation between our solar system and geometry. 

 

The establishment of a circle using a compass, or, on a computer 

screen is the first part of the process. Although the earth's orbit is 

elliptical, in this exercise, let the circumference be identified in length 

identical to the tropical orbit of the earth, i.e., 365.242 days.  

 

This work uses time as a measurement system as opposed to metric or 

imperial. This unit of measurement is used in ratio and proportion 

throughout the entire paper. It is a matter of comparing the 

measurements calculated from within this simple geometric drawing 

to astronomy time cycles. I used cross- referencing to compile the 

geometric calculations in this work. The results of geometric 

measurements  are compared with information obtained from NASA's 

website- http:/nssdc.nasa.gov/planetary/factsheet.html as well as other 

astronomy- based websites.   

 

Any measurement which correlates with astronomy cycles being 

above 97.6% accurate are considered relevant from which to form the 

basis of an understanding of the inherent synchronicity. Importantly, 

this is a crucial part of this examination, that is, to recognise as valid 

and significant results that are approximate. 

 

The following is an analysis of one circle which introduces the 

process. 

 

    

 

 

 

    Dia. 1.1 

                                                                                                                   
                                                                                                                   

 

 

 

Having established the circumference as the length of earth's solar 

tropical year, begin by comparing the radius to other astronomy 

cycles. 
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Dia. 1.2 

 

                                                                     
Circumference= 365.242(days) 

Geometric measure for Mercury sidereal rotation 

=C / (2*pi)  

= 365.242 / (2*pi) 

= 58.13 

 

Radius = 58.13 (days) 

NASA-Mercury rotation = 58.64 

Percentage error- 0.9% 

 

Here we find our first comparative measurement to that of the rotation 

of Mercury with a percentage error of 0.9% As other measurements 

within this circle are compared to astronomical cycles, additional 

scientific information begins to emerge.  

 

 

 

Dia.1.3 

                                                                        
Circumference= 365.242 
Geometric measurement for Saturn orbit 

= C^2 / (4*pi)  

= 365.242^2 / (4*pi) 

= 10,615.75 

 

Area = 10,615.75  

NASA-Saturn orbit- 10,746.9 

Percentage error- -1.22% 

 

 

See Appendix 1 for further mathematical analysis of one circle. 
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2.0 Two interlocked circles 

 

 

The previous diagrams demonstrate the process of how the 

mathematics of just one circle can be used as a foundation to calculate 

planetary time cycles. Adding a second circle to make two interlocked 

circles, dramatically increases the amount of scientific information. 

Another circle of equal radius is scribed upon the perimeter of the 

original circle to form two interlocked circles. The central almond 

shape is referred to as a ' lens'.  

 

The circumference remains at 365.242 days-(C). 

 

 

Dia. 2.1 
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Dia. 3.1 

Solar maximum 

 

                                            
 

 

Geometric Measure for solar maximum  

 

Circumference = 365.242 

= C^2/(4*pi^2)*(120*pi/180 – sin(120)) 

= 365.242^2/(4*pi^2)*1.22837 

= 4150.78 

 

     

 

 

 Geometric measurement of lens area             4150.78 (days) 

 

By comparison: 

 

NASA - Solar Maximum    11.1 years     4054.1 (days) 

 

Variation  96.68 (days)  

Percentage accuracy   102.38% 

Percentage error  2.380% 
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Dia. 4.1 

Mercury - Synodic period 

 

 

 

 

 

 

 

Geometric measurement for Mercury synodic period 

 

Circumference= 365.242 

= C / pi  

= 365.242/pi 

=116.26 

 

Diameter of circle -                                                 116.26 (days) 

 

By comparison: 

 

NASA-Mercury's synodic period                           115. 88 (days) 

 

Variation +.38  

Percentage accuracy   100.32% 

Percentage error          0.3279% 

 

 

 

See Appendix 2 for further mathematical analysis of two circles. 
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Results 

 

 
 

Table 2 

 

Solar 

System 

referenc

e 

Characteristic Geometric relationship Solar 

Tropical Year 

C = 365.242 

Diameter = C / pi 

Radius = C / (2*pi) 

Process Reference 

Sun Solar Maximum 2*[C/(2*pi)]^2* 

(120*pi/180 – sin(120)) 

2*Area of segment  (area of 

overlapping circles) 

NOTE: angles are in degrees 

3.1 

Mercury Synodic cycle C / pi Diameter of circle 4.1 

 

 

Sidereal rotation 

(Axis rotation) 

C / (2*pi) Radius of circle 4.2 

 Sidereal Orbit  3/2 * C / (2*pi) Midpoint between two circles (1.5 

times the radius) 

4.3 

 Solar day  

(length of day) 

3/2 * C / pi Width of two interlocked circles (1.5 

times the diameter) 

4.4 

Venus  Synodic cycle 5 * C / pi Perimeter of rectangle 5.1 

 Sidereal rotation 2/3 * C 2/3 of the circumference circle 5.2 

 Sidereal Orbit  

 

C/(2*pi)*(3+sqrt(3)/2) Width of two interlocked circles + ½ 

chord length. 

5.3 

 

 Solar day  C / pi Diameter of circle 5.4 

 Eight year 

Venus -Earth 

synodic cycle 

sqrt(3)* [C/(2*pi)]^2 / 2 Area of rhombus enclosed by ellipse 

 (shaded) = p*q/2 

5.5 

 

Earth Synodic cycle n/a -  

 Tropical Orbit C Circumference of circle 6.1 

 Sidereal year C Circumference of circle 6.2 

 Solar day N/a -  

Mars Synodic cycle C*[2 + sqrt(3)/(4*pi)] 2 x circumference + ½ ellipse 7.1 

 Sidereal rotation C*[1 + 3*Sqrt(3)/(2*pi)] Circumference + perimeter of 

inscribed equilateral triangle 

7.2 

 Sidereal Orbit C*(4/3 + sqrt(3)/pi) Length of lens + 2/3 circle x 2 7.3 

 Solar day n/a   

Jupiter Synodic Cycle 5*C / pi - C/2 Perimeter of bounded rectangle - 

half of circumference  

8.1 

 Sidereal rotation N/a    

 Sidereal Orbit (C/pi*1.5/sqrt(3))^2*sqrt(3) 

/4 

Area of inscribed triangle 8.2 
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 Jovian days C^2 / (4*pi) Area of circle 8.3 

Saturn Synodic cycle C/pi * (1 + (1.5)^2) Diameter ( 1 circle) + Length of (2 

circles + 1/2 width of (2 circles) 

9.1 

 Sidereal orbit C^2 / (4*pi) Area of circle 9.2 

 Sidereal rotation N/a    

 Saturnian days Sqrt(3)*C^2 / (3*pi) 2/3 circumference x length of chord 9.3 

Earth’s 

Moon 

Synodic month C / (4*pi) Half radius 10.1 

 Apsidal 

precession 
C^2/(8*pi) – 

C^2/(8*pi^2)(120 * pi/180 – 

sin (120degrees) 

Area of half a circle minus area of a 

segment ( shaded ) 

NOTE: angles are in degrees 

10.2 

 Lunar Nodal 

Precession 

C^2/(2*pi^2) Area of 1/2 squared circle  10.3 

 Lunar Nodal 

Precession (2) 

(C/pi)^2/2 Inscribed square 10.4 

Eclipse  

cycles 

Eclipse season 3*C/(2*pi) Width of two interlocked circles  11.1 

 

 Eclipse year 3*C/pi Diameter of two circles plus height 11.2 

 Inex cycle C^2/(4*pi) Area of circle 11.3 

 Metonic C^2/(2*pi^2)+C/2 Area of rectangle enclosing ½ circle 

+ 0.5 circumference 

11.4 

 Saros C^2/(4*pi) – 

C^2/(4*pi^2)(120 * pi/180 – 

sin (120 degrees) 

Area of circle minus area of 2 

segments 

11.5 

Speed of 

light 

Ratio of speed 

of earth to speed 

of light 

1: 3*C^2/(2*pi)^2 Half the area of the rectangle 

encompassing the two overlapping 

circles 

12.1 
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Table 2 

 

 

 MEASUREMENT 

IN TWO CIRCLES 

(DAYS) 

(experimental value) 

COMPARATIVE 

ASTRONOMY 

DATA (DAYS) 

(theoretical value) 

PERCENTAGE  

ACCURACY 

% 

VARAIATION 

(DAYS) 
Percentage 

error  
% 

SUN: 

Solar maximum 

 

4150.78 

 

4054.1 (11.1 years) 

 

102.38% 

 

+96.68 
 
+2.380% 

MERCURY: 

Synodic  

Axis rotation 

Orbit 

Solar day 

 

116.26 

58.13 

87.15 

174.3 

 

115.87 

 58.65     

 87.96 

175.9 

 

100.32% 

99.11 

99.12 

99.09 

 

+.38 

-.52 

-.77 

-1.6 

 
+0.3279% 

-0.8866% 

-0.8754% 

-0.9096% 

VENUS: 

Synodic cycle  

Orbit 

Axis rotation 

Solar day 

Conjunctions earth 

 

581.3 

243.49 

224.7 

116.26 

2926.38 

 

583.92 

243.1 

224.7 

-116.75 

2919.67 

 

99.5513% 

100.197% 

100% 

99.58% 

100.22% 

 

-2.62 

+.48 

00 

-.49 

+6.7 

 

-0.4487% 

-0.1975% 

 0.0000% 

-0.4197% 

0.2298% 

EARTH: 

Tropical year 

Sidereal year 

 

365.24 

366.242 

 

365.24 

365.242 

 

100.00% 

99.27% 

 

0 

1 

 

0% 

-0.2738% 

MARS: 

Synodic 

Solar days 

Orbit 

 

 

780.78 

667.294 

688.3 

 

 

779.9 

668.59 

686.9 

 

 

100.1153% 

99.80% 

100.20% 

 

 

+.92 

-1.29 

-1.4 

 

 

+0.1154% 

-0.1938% 

+0.2038% 

 

JUPITER: 

Synodic cycle 

Orbit 

Solar day 

 

398.5 

4389.32 

10,615.75 

 

398.88 

4332.82 

10475.8 

 

99.94% 

101.30% 

101.33% 

 

-.02 

+ 56.5 

+ 139.5 

 

-0.0501 

+1.304% 

+1.3359% 

SATURN 

Synodic cycle 

Orbit 

Saturian days 

 

377.7 

10,615.75 

24,516.01 

 

378.1 

10,746.94 

24,491 

` 

99.89% 

98.77% 

100.102 

 

-0.4 

+131.19 

25.01 

 

-0.1058 

-1.2207 

+0.1021 

MOON: 

Synodic cycle 

Apsidal nodes 

Lunar  precession 

 

29.06 

3232.5 

6758.19 

 

29.53 

3232.5 

6793.35 

 

98.40% 

100% 

99.48% 

 

-.47 

0.0 

35.16 

 

-1.5916% 

0.0% 

-0.5176% 

ECLIPSECYCLES 

Eclipse season 

Eclipse year 

Inex cycle 

Metonic cycle 

Saros cycle  

 

174.3 

348.78 

10,615.75 

6940.8 

6464.6 

 

173.31 

346.3 

10,571.95 

6939.6 

6585.3 

 

100.57% 

100.716% 

100.41% 

100.017% 

98.16% 

 

+.99 

+2.48 

+43.85 

+1.2 

-120.7 

 
+0.577% 

+0.7161% 

+0.4143% 

+0.0172 % 

-1.8239% 
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Dia 13 

 

 

 

 

                          
 

 

 

 

 

Discussion 

 

This article initially proposed that a geometric model comprised two circles 

could be used to evaluate relatively accurate orbital time frequencies of the 

planets in our solar system.  

 

 It has been demonstrated that there is a means to calculate astronomy  

 data using predominately elementary mathematical processes. Indeed, it has 

been shown that dissecting just one circle produces some significant results. 

 Comparative results of two interlocked circles yield percentage error  

 results in some cases, as accurate as 0.3% error. It was noted that the  

 further away a planet is from earth, the comparative measurements  

 became slightly less accurate. 

 

 

Conclusion 

 

 The theoretical process of comparing geometric bounding and inscribed 

properties of circle measurements with orbital  time values from our solar 

system has proved that a synchronicity  exists beyond the normal scope of 

what could be termed a coincidence. See diagram 13 for evidence of the 

calculations occurring simultaneously where the reference point, earth's orbit 

of 365.242 days, is applied to the circumference. 

 

The suggestion by these results alludes to the hypothesises that time must 
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conform to an invisible geometric pattern.  Applications for this research 

could lead to a further understanding of the birth of the universe, the 

mechanics of the solar system or, the nature of physics compelled to 

conform within the structural boundaries of a  geometric circular 

framework. Perhaps this hypothesis could be applied to other solar system 

dynamics throughout the universe. Additional scientific information could 

be derived using additional circles maintaining a circumference equal to 

365.242 days scribed around a central circle. 
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Appendix 1 

 

One circle 

 

 

 

 

 

    Dia. 1.1 

                                                                                                                   
                                                                                                                   

 

 

 

 

 

 

Dia. 1.2 

 

                                                                     
 

Geometric measurement for Mercury sidereal rotation 

=C / (2*pi)  

= 365.242 / (2*pi) 

= 58.13 

 

Radius = 58.13 (days) 

NASA-Mercury rotation = 58.64 

Percentage error- 0.9% 

 

 

 

 

 

 

\ 
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Dia.1.3 

                                                                        
 
Geometric measurement for Saturn orbit 

= C^2 / (4*pi)  

= 365.242^2 / (4*pi) 

= 10,615.75 

 

Area = 10,615.75 (days) 

NASA-Saturn orbit- 10,746.9 (days) 

 

Percentage error- -1.22% 

 

 

Dia. 1.4 

                                                                        
 

 

Geometric measure for Venus solar day 

=C / pi 

= 365.242 / pi 

    = 116.26 

 

Diameter – 116.26 (days) 

NASA – Venus - Solar day- 116.75(days) 

 

Percentage error 0.41% 
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As the circumference of the circle is dissected into three equal parts  

forming a triangle, the results become more encompassing. 

 

Dia. 1.5 

                                                                         
 

 

                                                Geometric measure for Venus rotation period 

= 2/3 * C 

= 2/3 * 365.242 

    = 243.49 

 

Arc length  = 243.49 

NASA- Venus axis rotation – 243.1 

Percentage error   -0.41% 

 

 

Dia.1.6 

                                                                         
 

Geometric measurement for Jupiter orbit 

Area of inscribed triangle = length of triangle^2 * sqrt(3) / 4 

= (C/pi*1.5/sqrt(3))^2 * sqrt(3) / 4 

= (365.242/pi*1.5/sqrt(3))^2 * sqrt(3) / 4 

= 4389.586 days 

 

Area of triangle - 4389.32  

NASA - Jupiter orbit 4332.82 

Percentage error  1.304% 

 

 

 

    Dia.1.7 
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Geometric measurement for lunar synodic month 

= C / (4*pi)  

= 365.243 / (4*pi) 

=29.06  
 

Geometric measure  =  29.06 (days) 

NASA -Moon synodic -  29.53 (days) 

Percentage error  -1.59% 

 

 

 

Dia.1.8 

 

 

                                                                         
                                                     

 

Geometric measurement for Mars orbit 
= C*(4/3 + sqrt(3)/pi)  

=365.242*(4/3 + sqrt(3)/pi)/2 

= 688.3 

 

 

Perimeter = 344.17 

    NASA -. 5 (
1
/2) of mars year  

    344.17 x 2 = 686.9 

    percentage error – 0.2 

 

 

 

 

 

Dia.1.9 
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Area = 6464.6  

NASA - Saros cycle-  6466.1 

percentage error – 0.0217% 

 

 

 

 

Dia.1.10 

                              

 

                                              
                                                              

Geometric Measure for solar maximum  

= C^2/(4*pi^2)*(120*pi/180 – sin(120)) 

= 365.242^2/(4*pi^2)*1.22837 

= 3379.105*1.22837 

= 4150.78 

 

 

Shaded Area  = 4150.6 

    NASA -Solar maximum- 4054.1 

    percentage error  +2.380% 

 

 

 

 

 

 

 

 

 

Dia. 1.11 
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Geometric measurement for Mercury Sidereal orbit 

= 3/2 * C / (2*pi) 

= 3/2 * 365.242 / (2*pi) 

=87.19 

 

Height of Triangle =  87.19 (days) 

NASA - Mercury sidereal period – 87.96 (days) 

Percentage error          -0.9096 

 

 

Dia. 1.12 

 

                                                                                             
 

 

 

 

 

 

Area + half circumference= 6940.81 
= C^2/(2*pi^2)+C/2 

= 365.242^2/(2*pi^2)+365.242/2 

= 6,940.8 

 

 

Variation   1.2 days 

NASA Metonic cycle – 6939.6 

Percentage error 0.017% 
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Dia. 1.13 

 

                                                                                                                              
                                                                  
Geometric  measurement  for nodal precession                                               

= C^2/(2*pi^2) 

= 365.242^2/(2*pi^2) 

=67658.19 

                                   
Variation   34.8 days (days) 

NASA - Nodal precession   6793.35(days)  

Percentage error 0.51% 

 

 

 

Dia. 1.14 

 

                                                                     
 

 

 

 

Geometric measurement for Mars solar days 

=C*[1 + 3*Sqrt(3)/(2*pi)] 

=365.242*(1 + 3*sqrt(3)/(2*pi)) 

= 667.294 

 

Circumference of circle (365.242) + perimeter of triangle (100.684)                                         

Variation 1.39 days 

NASA - 668.59 

Percentage error  -0.1944% 
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Appendix 2 

Two circles 

 

 

 

 

3.0 Sun  

 

 

 

Dia. 3.1 

Solar maximum 

 

                                            
 

 

  

 

Geometric Measure for solar maximum  

= C^2/(4*pi^2)*(120*pi/180 – sin(120)) 

= 365.242^2/(4*pi^2)*1.22837 

= 3379.105*1.22837 

= 4150.78 

 

 

 

 Geometric measurement of lens area             4150.78 (days) 

 

By comparison: 

 

NASA - Solar Maximum    11.1 years     4054.1 (days) 

 

Variation  96.68 (days)  

Percentage accuracy   102.38% 

Percentage error  2.380% 

 

 

 

 



Calculating planetary cycles using geometry              Lindsay McAuley C 2015 Page 32 

 

 

 

 

4.0 Mercury. 

 

 

 

 

Dia. 4.1 

Mercury - Synodic period 

 

 

 

 

 

 

    

 

 

 

 

Geometric measure for Mercury synodic period 

= C / pi  

= 365.242 / pi 

= 116.26 

 

Diameter of circle -                                                 116.26 (days) 

 

By comparison: 

 

NASA-Mercury's synodic period                           115. 88 (days) 

 

Variation +.38  

Percentage accuracy   100.32% 

Percentage error          0.3279% 

 

    

 

 

 

Dia. 4.2 
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Mercury – Sidereal rotation period 

 

 

 

 

 

 

 

 

Geometric measure for Mercury sidereal rotation 

=C / (2*pi)  

= 365.242 / (2*pi) 

= 58.13 

 

Radius of circle (s)                                                          58.13 (days) 

 

By comparison: 

 

NASA- Mercury's Sidereal rotation period                     58.65(days) 

 

Variation -.52 (days)  

Percentage accuracy   99.11% 

Percentage error        -0.8866% 
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Dia. 4.3 

Mercury – Sidereal Orbit 

 

 

 

            
 

 

 

 

 

 

Geometric measurement for Mercury Sidereal orbit 

= 3/2 * C / (2*pi) 

= 3/2 * 365.242 / (2*pi) 

=87.19 

 

Midpoint of two interlocked circles -                              87.19 (days) 

 

By comparison: 

 

NASA- Mercury's Sidereal orbit                                     87.96 (days) 

 

Variation -.77 (days)  

Percentage accuracy   99.12% 

Percentage error          -0.8754% 
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Dia. 4.4 

Mercury-Solar day 

 

 

 

 

 

 

 

Geometric Measurement for Mercury Solar day 

= 3/2 * C / pi 

= 3/2 * 365.242 / pi 

= 174.3 

 

Geometric measurement                                                   174.3 (days) 

 

by comparison: 

 

NASA        Solar day                                                     175.9 (days) 

 

Variation  -1.6 days 

Percentage accuracy  99.09% 

Percentage error         0.9096% 
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Dia. 4.5 

 

 

 

 

 
 

 

 

 

 

 

 

As demonstrated in Diagram 4.5, a pattern begins to emerge with 

Mercury which presents itself as a scientific observation worthwhile 

pursuing further; that just two circles and their dissecting points can 

be described as a planetary orbital calculation model. This suggests 

characteristics of other planets in our solar system may also be 

derived using mathematics. 
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5.0 Venus 

 

The following diagrams show mathematical evidence of Venus 

cycles. For clarity, the previous Mercury references are omitted. 

Needless to say, their mathematical data is still present while the 

circumference remains at 365.242.  

 

 

 

Dia. 5.1 

Venus-Synodic period 

 

 

 
 

 

Geometric Measurement for Venus synodic period 

= 5 * C / pi 

= 5 * 365.242 / pi 

= 581.3 

  

Geometric perimeter                                                       581.3 (days) 

 

By comparison: 

 

 

NASA- Venus synodic cycle                                         583.92 (days) 

 

Variation -2.62 (days)  

Percentage accuracy   99.55% 

Percentage error           -0.4478% 

 

 

 

 

 

 

 

 

 



Calculating planetary cycles using geometry              Lindsay McAuley C 2015 Page 38 

 

 

 

Dia. 5.2 

Venus - Sidereal Rotation period 

 

 
 

 

 

    Geometric measure for Venus rotation period 

= 2/3 * C 

= 2/3 * 365.242 

= 243.49    

Geometric measurement                                                   243. 49(days) 

 

By comparison: 

 

NASA- sidereal rotation period                                       243.01 (days) 

 

Variation +.48 (days)  

Percentage accuracy   100.197% 

Percentage error           0.1975% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Calculating planetary cycles using geometry              Lindsay McAuley C 2015 Page 39 

 

    Additional method of calculating Venus rotation period 

     

    Geometric measure for Venus rotation period 

= 2/3 * C 

= 2/3 * 365.242 

    = 243.49 

 

 
 

    Dia. 5.3 

Venus- Sidereal Orbit  

 

 

 
 

Geometric measure for Sidereal orbit 

= C/(2*pi)*(3+sqrt(3)/2) 

= 365.242/(2*pi) *(3+sqrt(3)/2) 

= 224.7 

    

Geometric length                                                           224.7 (days) 

 

By comparison: 

 

NASA-orbit of the sun                                                      224.7 (days) 

 

Variation - 0 (days)  

Percentage accuracy 100.00  % 

Percentage error        0.000 % 
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Additional methods of calculating Venus sidereal orbit 

 

 

 

 
 

Geometric measure for Venus sidereal orbit 

=C 

Chord = 100.684 

=(365.242/3) + 100.684 

= 222.43 

 

Dia. 5.4  

Venus -Solar day 

 

 

 

 

Geometric measure for Venus solar day 

=C / pi 

= 365.242 / pi 

= 116.26    

Geometric length                                                            116.26(days) 

 

By comparison: 

 

NASA-  Venus solar day                                                -116.75(days) 

 

Variation -.49 (days)  

Percentage accuracy   99.58% 

Percentage error         -0.4197% 
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Venus/Earth synodic conjunctions            

 

Dia. 5.5 

Comparative Synodic cycles 

 

 
 

 
    Geometric measure for Venus/ Earth synodic conjunctions 

= sqrt(3)* [C/(2*pi)]^2 / 2 

= sqrt(3) * (365.242/(2*pi))^2/2   

= 2926.38 

 

    

Geometric area measurement                                      2926.38  (days) 

 

By comparison: 

 

8 earth years                                               2922.0 4(days) 

13 Venus years                                                               2921.03 (days) 

5 Venus/earth synodic periods                                        2919.41(days) 

12 Venus rotations                                                          2916.22 (days)    

      

                                 Mean        2919.67 

 

Variation  6.7(days)  

Percentage accuracy   100.22% 

Percentage error         0.2298 % 
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Alternative Venus/Earth synodic calculations 

 

 
 

Shaded area  = 725.15 x 4 

= 2900.6 

 

Variation – 19 days 

Percentage accuracy  99.34% 

Percentage error – 0.6508 

 

 

Dia. 5.5 

Sun, Mercury, Venus 

 

 

 
 

 

The above diagram shows the combined statistics of the Sun, Earth, 

Mercury and Venus  to reinforce the proof that a single image holds 

simultaneous evidence of astronomical data using relatively 

elementary mathematical calculations. 
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6.0 Earth 

 

 

Dia. 6.1 

Tropical orbit 

 

 

 

 

 

 
 

 

 

 

Geometric for earth- circumference 

= C 

= 365.242 

 

Geometric measure                                                                   365.242 

 

 

By comparison: 

 

NASA- Earth – Tropical orbit                                                   365.242 

 

 

 

Variation - 0 days 

Percentage accuracy  100% 

percentage error -0.000 % 
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Dia. 6.1 

Sidereal days 

 

 

 

 
 

 

 

 

 

 

 

Geometric measurement for Earth sidereal period 

 

= C 

= 365.242 

= 365.242 

 

Geometric measure                                                              365.242 

 

 

By comparison: 

 

NASA  Earth – Sidereal days                                                  366.242 

 

 

 

Variation 1 day 

Percentage accuracy  99.7269% 

percentage error -0.2738 % 
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7.0 Mars 

 

 

 

Dia. 7.1 

Mars Synodic period 

 

 

 
 

 

Geometric measurement for Mars synodic period 

C*[2 + sqrt(3)/(4*pi)] 

=365.242*[2 + sqrt(3)/(4*pi)] 

= 780.8    

Geometric measurement              780.8 (days) 

 

By comparison: 

 

NASA-  Synodic period-              779.9 (days) 

 

Variation  + 0.9261 (days)  

Percentage accuracy   100.1153% 

Percentage error          0.1154% 
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Dia. 7.2 

Mars Solar days  

 

 

       
 

Geometric measurement for Mars solar days 

=C*[1 + 3*Sqrt(3)/(2*pi)] 

=365.242*(1 + 3*sqrt(3)/(2*pi)) 

= 667.294 

 

Geometric measurement                                                667.294( days) 

 

by comparison: 

 

NASA-  Mars Solar days                                              668.59 (days) 

 

 

Variation 1.29 days 

Percentage accuracy 99.8061 

Percentage error  -0.1938%      
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Dia. 7.3 

Mars Sidereal  orbit period 

 

 

  

                               
 

Geometric measurement for Mars orbit 
= C*(4/3 + sqrt(3)/pi)  

=365.242*(4/3 + sqrt(3)/pi) 

= 688.3 

                                                Geometric measure                                                             688.3 (days) 

 

By comparison: 

 

NASA-  Mars Sidereal orbit period-                                  686.9 (days) 

 

Variation  +1.4 (days)  

Percentage accuracy   100.20 % 

Percentage error          0.2038% 
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8.0 Jupiter 

 

 

Dia. 8.1  

 

Synodic period 

 

 

 

 

 
 

 

 

 

 

 

Geometric measurement for Jupiter synodic period 

= 5 * C / pi - C/2 

= 5 * 365.242 / pi - 365.242/2 

=398.5 

 
                                                Geometric measure                                                          398.5  (days) 

 

By comparison: 

 

NASA-  Jupiter synodic period                                      398.88 (days) 

 

 

 

Variation  0.2 (days)  

Percentage accuracy   99.9498% 

Percentage error           0.0501% 
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    Dia. 8.2 

    Jupiter - Sidereal orbit period                        

 

 

 
 

 

Area of inscribed triangle = length of triangle^2 * sqrt(3) / 4 

= (C/pi*1.5/sqrt(3))^2 * sqrt(3) / 4 

= (365.242/pi*1.5/sqrt(3))^2 * sqrt(3) / 4 

= 4389.586 days 

 

   

Area of triangle                                                             4,389.58 (days) 

 

By comparison: 

 

NASA Jupiter Sidereal orbit period-                              4332.82 (days) 

 

Variation  56.52 (days)  

Percentage accuracy   101.30% 

Percentage error           1.304% 
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Dia. 8.3 

Jupiter Solar days 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Geometric measurement for Jupiter solar days 

 = C^2 / (4*pi) 

= 365.242^2 / (4*pi) 

= 10615.75 

 

Geometric measure                                                    10,615. 75(days) 

 

 

By comparison: 

 

 

NASA  Solar day                                                         10,475.8 (days) 

 

 

Variation 139.9 days 

Percentage accuracy 101.3359% 

Percentage error   + 1.3359% 
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9.0 Saturn 
 

 

 

Dia.9.1 

Synodic cycle 

 

 

 
 

 

 

 

 

Geometric measurement for Saturn synodic cycle 

 

1.5*Length of Rectangle + Diameter 

= 1.5*1.5*Diameter + Diameter 

= Diameter ( (1.5)^2+1) 

= C/pi * (1 + (1.5)^2) 

= 377.845 

 

 

Geometric measure                                                             377.8 (days) 

 

By comparison: 

 

NASA - Saturn synodic cycle                                                 378.1 (days) 

 

 

Variation 0.4 (days) 

Percentage accuracy     99.8942 % 

Percentage error      -0.1058 % 
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Dia.9.2 

Orbit of sun  

 

 

 
 

 

 

Geometric measurement for Saturn orbit 

= C^2 / (4*pi)  

= 365.242^2 / (4*pi) 

= 10,615.75 

 

Geometric measurement                                           10, 615.75 (days) 

 

By comparison: 

 

NASA Saturn's tropical orbit -                                   10,746.94 (days) 

 

Variation 131.19 (days) 

Percentage accuracy 98.77% 

Percentage error        -1.2207% 
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Dia. 9.2 

Saturnian Solar days per saturnian year 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Geometric measurement for Saturnian days 

= Sqrt(3)*C^2 / (3*pi) 

=365.242/3 x 2 = 243.4 x length of Lens- 100.684 

= 24,516.4 

Geometric measure                                               24,516.4 (days) 

 

by comparison: 

 

NASA- Saturn  Solar Day                                      24,491 (days) 

 

Variation 25.01 days 

Percentage accuracy 100.102 

Percentage error  0.1021% 
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10.0 Moon 

 

 

 

Dia. 10.1 

Synodic month 

 

 

 

 

 

 

 

 

 

Geometric measurement for lunar synodic month 

= C / (4*pi)  

= 365.243 / (4*pi) 

=29.06    

Geometric measurement                                                    29.06  (days) 

 

By comparison: 

 

NASA  Mean synodic month                   29.53 (days) 

 

Variation  -.47 (days)  

Percentage accuracy   98.40% 

Percentage error          -1.5916% 
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Dia. 10.2 

Apisidal precession 

 

 

 

 
 

 

Area shaded = half area of circle minus area of segment created by 

chord of intersection 

= pi*r^2/2 – r^2/2*(120radians – sin 120degrees) 

= C^2/(8*pi) – C^2/(8*pi^2)(120 * pi/180 – sin (120degrees) 

= 365.242^2/(8*pi) – 365.242^2/(8*pi^2)(120 * pi/180 – sin 

(120degrees) 

= 3232.5 days 

    

Geometric measurement                                                    3232.5(days) 

 

By comparison: 

 

NASA  Apisidal precession                    3232.5 (days) 

 

Variation  0(days)  

Percentage accuracy   100% 

Percentage error          0.0% 
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Dia. 10.3 

Lunar nodal precession 

 

 
 

Geometric  measurement  for nodal precession                                               

= C^2/(2*pi^2) 

= 365.242^2/(2*pi^2) 

=67658.19 

    

Geometric  measurement                                                 6758.19 days) 

 

By comparison: 

 

NASA  Nodal precession                             6793.35(days) 

 

Variation  35.16 (days)  

Percentage accuracy   99.4824% 

Percentage error          0.5176% 
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Dia. 10.4 

Alternative Lunar nodal precession 

 

 
 

= (C/pi)^2^2 

= (365.242/pi)^2/2 

=  6758.2 

 

Variation  35.16 (days)  

Percentage accuracy   99.4824% 

Percentage error          0.5176% 
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11.0 Eclipse cycles. 

 

 

 

 

Dia. 11.1 

Eclipse season 

 

 

 

 

 

 
 

Geometric measure for Eclipse season 

= 3*C/(2*pi) 

= 3*365.242/(2*pi) 

= 174.39 

 

Width of two interlocked circles                                     174.3 (days) 

    

 

By comparison: 

 

NASA- Eclipse season                                                  173.31 (days) 

 

Variation  + .99 (days)  

Percentage accuracy   100.5770% 

Percentage error           0.577% 
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Dia. 11.2 

Eclipse year 

 

 
 

 

Geometric measurement for Eclipse year 

=3*C/pi 

=3*365.242/pi 

= 348.78 

 

Geometric measurement                                          348.78 (days) 

    

By comparison: 

 

NASA- Eclipse season                                                      346.3 (days) 

 

Variation  +2.48 (days)  

Percentage accuracy   100.716% 

Percentage error          0.7161% 

 

   

 

Alternative Eclipse cycle 

174.3 x 2 = 348.6 
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Dia. 11.3 

Inex cycle 

 

 

 

 

 
 

 

Geometric measure for Inex cycle 

= C^2/(4*pi) 

= 365.242^2/(4*pi) 

= 10, 615.75 

 

               Area of one circle                                                          10,615.75(days) 

   

By comparison: 

  

Inex eclipse cycle         10,571.95 (days) 

 

Variation  43.85 (days)  

Percentage accuracy   100.4143 

Percentage error          0.4143% 
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Dia.11.4 

Metonic cycle 

 

 

 

 
 

 

 

 

 

Geometric  measure for Metonic cycle 

= C^2/(2*pi^2)+C/2 

= 365.242^2/(2*pi^2)+365.242/2 

= 6,940.8 

 

Geometric measure                                                       6940.8 (days) 

 

 

NASA- Metonic cycle                                                 6939.6 (days) 

 

 

Variation   1.2 days 

Percentage accuracy 100.0172% 

Percentage error 0.0172% 
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Dia. 11.5 

Saros cycle 

 

 

 
 

 

 

Area shaded = area of circle minus area of lens created by chord of 

intersection 

= pi*r^2 – r^2*(120*pi/180 – sin 120 degrees) 

= C^2/(4*pi) – C^2/(4*pi^2)(120 * pi/180 – sin (120 degrees) 

= 365.242^2/(4*pi) – 365.242^2/(4*pi^2)(120 * pi/180 – sin (120 

degrees) 

= 6464.98 days 

     

 

  

Geometric measurement                                      6464.98 (days) 

    

By comparison: 

 

NASA-Saros cycle                                                           6585.3(days) 

 

Variation  +120.7(days)  

Percentage accuracy   98.1671% 

Percentage error           1.8329% 
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12.0 Ratio of speed of light / speed of earth                                                                                                    

 

 

 

 

Calculations which involve the study of time invariably includes the speed of light (c). Current estimates 

suggest this to be 299,792.485 kilometres per second in a vacuum. In this context of using geometry and the 

solar tropical year to measure time, there should also be some effort to seek out a means to establish a 

method for calculating the speed of light however arbitrary  the process may be perceived. The following 

geometric calculations determine the comparative ratio of the speed of earth on its orbit around the sun with 

that of the speed of light.  This ratio is generally known as 1:10,066. 

 

Therefore; the ratio of 1 unit (day) to the area of the square (days)-( 116.26 x 87.15 = 10,132, ) is equal to the 

ratio of the speed of earth to the speed of light. Based on the above calculations, the percentage error is 

0.6557%. 

 

The speed of the earth is not constant therefore the calculations must factor in this variation.  

 

Geometric measure for ratio of speed of earth to the speed of light 

= 1: 3*C^2/(2*pi)^2 

= 1: 3*365.242^2/(2*pi)^2 

=10,132 

 

   

   Dia. 11.1 
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The following references were located at Wikipedia en.wikipedia.org/w/index.php 

 

1.Forth Coordinate- Wikipedia - In modern physics, space and time, are unified in a four-dimensional 

Minkowski continuum called space-time, whose metric treats the time dimension differently from the three 

spatial dimensions. In classical, non-relativistic physics it is a scalar quantity and, like length, mass and 

charge, is usually described as a fundamental quantity. Time can be combined mathematically with other 

physical quantities to derive other concepts such as motion, kinetic energy and time-dependent fields.   

 

Orbital parameters 
[Astronomical Almanac 2000, p. E3] 

  
2. 

Aristarchus of Samos (/ˌærəˈstɑrkəs/; Greek: Ἀρίσταρχος Aristarkhos; c. 310 – c. 230 BC) was an ancient 

Greek astronomer and mathematician who presented the first known model that placed the Sun at the center 

of the known universe with the Earth revolving around it (see Solar system). He was influenced by Philolaus 

of Croton, but he identified the "central fire" with the Sun, and put the other planets in their correct order of 

distance around the Sun.[1] As Anaxagoras before him, he also suspected that the stars were just other bodies 

like the sun. His astronomical ideas were often rejected in favor of the geocentric theories of Aristotle and 

Ptolemy. 

 

3. 

In the Ptolemaic system, each planet is moved by a system of two spheres: one called its deferent, the other, 

its epicycle. The deferent is a circle whose center point, called the eccentric and marked in the diagram with 

an X, is removed from the Earth. The original purpose of the eccentric was to account for the differences of 

the lengths of the seasons (autumn is the shortest by a week or so), by placing the Earth away from the center 

of rotation of the rest of the universe. Another sphere, the epicycle, is embedded inside the deferent sphere 

and is represented by the smaller dotted line to the right. A given planet then moves around the epicycle at 

the same time the epicycle moves along the path marked by the deferent. These combined movements cause 

the given planet to move closer to and further away from the Earth at different points in its orbit, and 

explained the observation that planets slowed down, stopped, and moved backward in retrograde motion, and 

then again reversed to resume normal, or prograde, motion. 

 

4. 

Senenmut (sometimes spelled Senmut, Senemut, or Senmout) was an 18th dynasty ancient Egyptian 

architect and government official. His name translates literally as "mother's brother."[1] 

 

 

5.
 Plato (/ˈpleɪtoʊ/;[1] Greek: Πλάτων Plátōn pronounced [plá.tɔːn] in Classical Attic; 428/427 or 424/423 – 

348/347 BC) was a philosopher and mathematician in Classical Greece, and the founder of the Academy in 

Athens, the first institution of higher learning in the Western world. He is widely considered the most pivotal 

figure in the development of philosophy, especially the Western tradition.[2] Unlike nearly all of his 

philosophical contemporaries, Plato's entire œuvre is believed to have survived intact for over 2,400 years.[3] 

 

6. 

Nicolaus Copernicus (/kɵˈpɜrnɪkəs/;[1] Polish: Mikołaj Kopernik [miˈkɔwaj kɔˈpɛrɲik] (  listen); German: 

Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance mathematician and astronomer 

who formulated a model of the universe that placed the Sun rather than the Earth at the center of the 

universe.[a] The publication of this model in his book De revolutionibus orbium coelestium (On the 

Revolutions of the Celestial Spheres) just before his death in 1543 is considered a major event in the history 

of science, triggering the Copernican Revolution and making an important contribution to the Scientific 
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Revolution. 

 

7. 

Galileo Galilei (Italian pronunciation: [ɡaliˈlɛːo ɡaliˈlɛi]; 15 February 1564[3] – 8 January 1642), was an Italian 

astronomer, physicist, engineer, philosopher, and mathematician who played a major role in the scientific 

revolution during the Renaissance. Galileo has been called the "father of observational astronomy",[4] the 

"father of modern physics",[5][6] and the "father of science".[7] His contributions to observational astronomy 

include the telescopic confirmation of the phases of Venus, the discovery of the four largest satellites of 

Jupiter (named the Galilean moons in his honour), and the observation and analysis of sunspots. Galileo also 

worked in applied science and technology, inventing an improved military compass and other instruments. 

 

8. 

Johannes Kepler (German: [ˈkɛplɐ]; December 27, 1571 – November 15, 1630) was a German 

mathematician, astronomer, and astrologer. A key figure in the 17th century scientific revolution, he 

is best known for his laws of planetary motion, based on his works Astronomia nova, Harmonices 

Mundi, and Epitome of Copernican Astronomy. These works also provided one of the foundations 

for Isaac Newton's theory of universal gravitation. 
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